《控制工程基础》实验教学大纲

一、本课程的目的与任务

本课程为机械工程及自动化专业的专业基础课,是学生学习专业课和从事本专业科研、 生产所必备的理论基础。通过本课程的学习,能够使学生熟悉机械控制系统的数学模型,掌 握控制系统分析的一般方法和基本理论,为机械控制工程的分析和设计打下基础。

二、本课程实验内容及具体要求

1、实验理论方面:

典型环节、二阶系统的传递函数,参数对典型系统的瞬态响应和稳定性的影响,了解和掌握 校正的理论和意义,观察和分析校正系统和非校正系统的响应曲线。

2、实验教学方面:

要求学生按照各种实验要求,搭接电路,合理选择电路参数使控制系统达到性能要求。

- 3、对学生能力培养的要求:
- ①熟悉各典型环节的传递函数及阶跃响应曲线,观察参数变化对典型环节动态特性的影响;
 - ②了解二阶系统阶跃响应曲线的实验测试方法;
 - ③掌握二阶系统的参数对阶跃响应指标的影响;
 - ④观察和分析校正系统和非校正系统的响应曲线。

三、实验项目的设置及学时分配:

序号	实验项目	学时	要求	类型	类别	实验基本要求	实验 对象	实验 分组	
1	典型环节 的模拟研 究	4	必做	验证	专业 基础	熟悉各典型环节的传递函数及 阶跃响应曲线,观察参数变化 对典型环节动态特性的影响	机械 工程 及 动化	2-3 人 /组	
2	二阶、三阶 系统的瞬 态响应和 稳定性	3	必做	验证	专业基础	熟悉二阶系统响应曲线的实验 测试方法,了解三阶系统的参 数对阶跃信号的响应指标的影 响			
3	系统校正	1	必做	验证	专业基础	了解和掌握校正的理论和意 义,观察和分析校正系统和非 校正系统的响应曲线。	机械 工程 及自 动化	2-3 人 /组	

四、授课计划与学时安排

本课程实验8学时,各实验与讲课穿插进行。

五、实验考核及评分办法

- 1、学生进实验室要求有预习报告并检查;
- 2、实验做完后对每一学生完成情况和解决问题的能力进行考核,并提出相应存在问题 进行质疑;
 - 3、对实验报告给予评分(特别要求总结存在哪些问题,如何解决);
 - 4、综合每项实验状况给出成绩。